Discussion

Comment on "A one dimensional model of a methanol fuel cell anode" [K. Scott, P. Argyropoulos, J. Power Sources 137 (2004) 228]

A.A. Kulikovsky *, 1
Research Center "Juelich", Institute for Materials and Processes in Energy Systems (IWV-3), D-52428 Juelich, Germany

Received 28 October 2004; accepted 12 January 2005
Available online 26 February 2005

The paper by Scott and Argyropoulos deals with the analytical model of the anode side of a direct methanol fuel cell (DMFC). The authors consider two expressions for the rate of methanol oxidation j
$j=\frac{6 F k_{10} C_{\mathrm{M}} \exp (\beta \eta)}{1+k_{20} C_{\mathrm{M}} \exp (\beta \eta)}$
and
$j=\frac{6 F k_{10} C_{\mathrm{M}} \exp (\beta \eta)}{C_{\mathrm{M}}+k_{20} \exp (\beta \eta)}$,
which correspond to the two alternative reaction pathways (equation numbers are those in [1]). Here η is local overpotential; for the other designations see [1].

Expressions (16) and (22) are then used to calculate the profile of proton current density (denoted also as j) across the anode catalyst layer. In [1], this problem is formulated as follows (p. 232): "In the catalyst region, the change in ionic current density, i.e. due to proton conductivity is given by
$\frac{\mathrm{d} j}{\mathrm{~d} x}=-a j$
where, a , is a specific reaction surface area $\left(\mathrm{m}^{-1}\right)$." Linear relation (33) between j and $\mathrm{d} j / \mathrm{d} x$ greatly simplifies solution of the problem [1]. Unfortunately, Eq. (33) is erroneous.

Eqs. (16) and (22) determine the rate of methanol oxidation reaction. Although j in (16) and (22) has dimension

[^0]$A \mathrm{~cm}^{-2}$, this value is not a local current density, but the rate of charge production per unit area of the catalyst surface per second. Physically, j on the right side of (33) is a scalar.

In contrast, the left side of (33) should contain proton current density, which is a vector. The main reason for the subsequent errors in [1] stems from the mixing of these two different values, which are designated by the same symbol j in Eq. (33).

Let proton current density is i; the change in i with the distance x across the catalyst layer is due to the protons generated in electrochemical reaction. ${ }^{2}$ Eq. (33), therefore, should be
$\frac{\mathrm{d} i}{\mathrm{~d} x}=-a j$
where j is given by (16) or (22), depending on the model of reaction kinetics. Note that no linear relation between i and $\mathrm{d} i / \mathrm{d} x$ exists. Eq. (33a) and the Ohm's law $i=-\sigma(\mathrm{d} \eta / \mathrm{d} x)$ form a system of two equations for two variables: $i(x)$ and $\eta(x) .^{3}$ Accurate solution to this system for the case of $j(22)$ is given in [2].

References

[1] K. Scott, P. Argyropoulos, J. Power Sources 137 (2004) 228
[2] A.A. Kulikovsky, Electrochem. Commun. 5 (2003) 530.

[^1]
[^0]: * Tel.: +49 2461 615396; fax: +49 2461616695.
 ${ }^{1}$ On leave from Moscow State University, Research Computing Center, 199992 Moscow, Russia.

[^1]: ${ }^{2}$ Not "due to proton conductivity", as stated in [1].
 ${ }^{3}$ Eq. (33) describes exponential profile $j(x)=j_{0} \exp (-a x)$ and no other equations are then required "to solve" the problem.

